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Abstract

Front-end acoustic analysis in early versions of the Airborne Reconnais-
sance Mission (ARM) continuous speech recognition system was based on the
SRUbank filterbank analyser. In its default configuration, this is a conven-
tional, high-resolution filterbank analyser with 27 critical band filters spanning
the range 0 to 10kHz and producing 100 frames per second. This memoran-
dum reports experiments which show that recognition accuracy is improved by
applying a suitable dimension-reducing linear transformation to the output of
SRUbank. Experiments were conducted using several linear transformations
of SRUbank, including 8, 12 and 16 cosine coefficients plus mean channel am-
plitude, 8, 12 and 16 cosine coefficients plus mean channel amplitude plus
difference between corresponding elements of the feature vector at +20 mil-
liseconds, and 8 and 16 principal components.
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1 Introduction

The work described in this memorandum was conducted at the UK Speech Research
Unit as part of the Airborne Reconnaissance Mission (ARM) continuous speech
recognition project. The aim of the ARM project is accurate recognition of con-
tinuously spoken airborne reconnaissance reports using a speech recognition system
based on phoneme-level hidden Markov models (HMMs). The ARM project is de-
scribed in [2]. The work described here uses ARM-3(IF), an early version of the
ARM system.

Front-end acoustic analysis in ARM-3(IF) is based on a conventional filter-
bank analyser with 27 critical band filters spanning the range 0 to 10kHz. However,
it has been shown elsewhere (e.g.[4]) that the recognition accuracy of such a system
is improved if this type of spectral representation is replaced with a cepstral rep-
resentation, and if information about spectral change with respect to time is made
available to the recogniser.

In the context of the ARM system a cepstral representation is obtained by
transforming the SRUbank output vectors using a discrete cosine transform [3). For
typical speech signals this has the effects of diagonalising the covariance matrix of
the data (i.e. removing correlation between the different cosine coefficients) and
concentrating the variance of the data into the lower dimensions. This raises two
issues. First, since the higher cosine coefficients carry virtually no variance it is often
assumed that they are at best irrelevant to the classification process and at worst
act as noise. (In general this assumption is false, since variance is not a universal
guide to discrimination power. It is easy to construct simple two-class examples
where all discriminative information is carried by the direction of minimum overall
variance and none by the direction of overall maximum variance). Therefore the
question of how many, and which, cosine coefficients should be used arises. Second,
if any performance improvement which results from the application of the cosine
transform is due to the diagonalisation of the covariance matrix, then one would
expect to observe a larger improvement if the cosine transform were replaced by the
linear transformation which results from a principal components analysis, since the
latter is specifically designed to diagonalise the covariance matrix. Both of these
issues are addressed by the experiments reported in this memorandum.

Information about how the cepstrum changes with respect to time can be
included in the front end representation by augmenting the feature vector at time
t with the difference between feature vectors at times ¢ + § for some § > 0. Since
this has the effect of doubling the dimensionality of the acoustic vectors (and hence
doubling the number of system parameters) there is a danger that any improvement
in the quality of the front-end might be overshadowed by undertraining due to an
inability of the training data to support the increased number of parameters. Since
all HMMs in ARM-8(IF) have Gaussian state output pdfs with diagonal covariance



matrices, a solution to this problem is to estimate a common shared, or grand,
covariance matrix for all states of the HMMs in the model set [5]. Despite its
simplicity, this method has been shown to be extremely effective in improving the
performance of systems with a large number of parameters [5, 2]

This note reports the results of experiments which compare the recognition
accuracy obtained using front-end representations consisting of 8, 12 and 16 co-
sine coefficients plus mean channel amplitude, and 8 and 16 principal components.
Experiments are also reported in which 8, 12 and 16 cosine coefficients plus mean
channel amplitude are supplemented with the differences between correponding ele-
ments of the feature vectors at £20 milliseconds. The latter experiments use both
state specific and grand covariance matrices in the HMM state output probability
density functions.

2 ARM Version 3IF

Front-end acoustic analysis in ARM-3(IF) is based on the SRUbank filterbank anal-
yser with default settings (27 critical band filters spanning the range 0 to 10kHz, 100
frames per second). The feature vector o, at time ¢ is obtained from the SRUbank
output vector v, by subtracting the mean channel amplitude m(v,) from each com-
ponent of v, and setting the 28** component of o; equal to m(v,). More precisely,

0 =v?-m(v,), d=1,..,27
0,28 = m(vy)
where
m(v,) = —Lf:v d
v 27d=1 ‘

Acoustic-phonetic processing in ARM-3(IF) uses a set of 72 HMMs consisting of:

e Sixty-two three-state phoneme-level HMMs, comprising one HMM for each
vowel plus separate HMMs for all syllable initial and syllable final consonants
which occur in the ARM vocabulary.

o Four single state “non-speech” HMMs to cope with non-speech sounds in re-
gions of the test data between spoken sentences.

e Six word-level HMMs for the commonly occuring short words “air”, “at”, “in”,
“of”, “oh” and “or”. The number of states in these word-level models is equal
to three times the number of phonemes in their baseform transcriptions.

All HMM states in ARM-3(IF) are identified with single multivariate Gaus-
sian state output probability density functions with diagonal (co)variance matrices.
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'8 The Discrete Cosine Transform

The discrete cosine transform used in the experiments is defined as follows. As
above, each 27 dimensional SRUbank output vector v = (v!,v%,...,v%") was first
amplitude normalised to produce a new vector w, given by:

w=v~mv)s
Where ¢ = (1,1, ...,1). The discrete cosine transform C is defined by

7 % j %X (d—0.5)
27

27
C(w)y = 2 Y wcos(
27 d=1

)

for 7 =1 to 26.

Figure 1 shows a graph of variance as a function of cosine coefficient computed
over approximately 56 seconds of transformed speech. The figure confirms that most
of the variance is carried in the lower cosine coefficients, with a large drop in variance
at the 8 coefficient and very little variance beyond the 16** . Based on this data it
was decided to conduct experiments using front-end representations consisting of 8,
12 and 16 cosine coefficients plus mean SRUbank channel amplitude. In what follows
these three representations will be refered to as CC8, CC12 and CC16 respectively.
Notice that CCd is a d + 1 dimensional representation with the mean SRUbank
channe]l amplitude forming the d + 1** component. The latter replaces the zeroth
cosine coefficient (which is a linear function of the channel mean), which is not used.
FORTRAN code for computing this representation from the original SRUbank data
is included in appendix A.

4 The Discrete Cosine Transform plus Time Dif-
ferences

It has been shown elsewhere (e.g. [4]) that recognition accuracy is improved if infor-
mation concerning the change in feature vectors with respect to time is included in
the front end representation. Accordingly three additional front-end representations
CC8 6, CC12 § and CC16 § were included in the experiments. These representa-
tions are defined as follows. If u, denotes the vector at time t for representation CCd
then the corresponding vector u', for representation CCd § is the 2d + 2 dimensional
vector defined by:

ud=ud ford=1,..,n+1

u = —upd, ford=n+2,..,2n+ 2.



Variance

1 6 11 16 21 26
Cosine Coefficient

Figure 1: Variance as a function of cosine coefficient

In the present experiments § = 2. Notice that these representations include
mean SRUbank channel amplitude at time t (component d + 1) and difference be-
tween mean channel amplitudes at times ¢ £ 6 (component 2d + 2).

5 Grand Variance

Experiments were conducted using the CC8 § and CC16 6 front-ends in which all
of the states in the HMMs in the model set shared a common, grand diagonal
(co)variance matrix [5]. These parametrisations will be refered to as CC8 § GV and
CC16 § GV repectively.

For information, figure 2 shows grand variance as a function of cosine coeffi-
cient for the CC16 representation, computed during HMM parameter reestimation.
The smoother form of this graph compared with figure 1 follows from the fact that
grand variance is computed over sets of feature vectors which are mapped onto
the same state by the forward-backward algorithm during the reestimation process
rather than over all feature vectors. The increase in grand variance for the 17t
component occurs because this component corresponds to mean channel amplitude.
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Figure 2: Grand variance as a function of cosine coefficient
6 Principal Component Analysis.

The Cosine Transform is one example of an unsupervised feature extraction mecha-
nism which is also dimension-reducing. This section describes another linear feature
extraction mechanism, Principal Component Analysis. This technique is equivalent
to finding a rotation of the original pattern space (the 27 dimensional SRUbank
space in this case) to a new set of orthogonal vectors. The rotation is such that the
projection of the data onto a subset of the new orthogonal basis vectors is optimum
from the point of view of data reconstruction. The mathematics summarising this
process follows.

Consider a set of P patterns in an n dimensional Euclidean space {2, €
R" p = 1,2,...P}. It is convenient to work with zero mean data, i.e. 2, —
2z, = @, — & where F is the sample mean of the data set. Of course, one may
express z in terms of the projections onto any set of n orthogonal basis vectors,
{e; € R® i=1,2,...n}. However, we are more interested in the projection onto a
finite subset, say r, of the orthogonal vectors. The criterion for choosing these basis
vectors is to minimise the sum square error between the actual set of patterns and
the reconstructed set of patterns. Thus we wish to minimise

P r
Epy=2311 2= 3_ apies |I° (1)
p=1 k=1

Due to the assumed orthonormality of {e; i = 1,2,...n}, the expansion coefficients




are given explicitly as
apy = Z,.€; (2)

Substituting (2) in (1) and rearranging gives the error to be minimised as

P n
E=3 1 3 apesll

p=1 k=r41

P n 2
=X Il X (s;-es)en ll

p:l :=r+1 (3)
=) Y ei.zz.e

p=1k=r41

n

= Z e,‘,.i.e;.

k=r+1

where @ is the covariance matrix of the original data. It can be shown (by the
method of Lagrange multipliers) that the minimum of the above error expression is
obtained when the orthogonal basis vectors, e, are chosen to be the eigenvectors of

the data covariance matrix,
'I’e,. = z\;.c;. (4)

Thus, using (4) in (3) shows that the minimum estimated reconstruction error ob-
tainable is given by
E.= Y M\ (5)
h=r4l
Therefore, E, will be a minimum if the first r eigenvectors of the covariance matrix
corresponding to the r largest eigenvalues are chosen.

This illustrates why the optimum projection from the point of view of recon-
- struction error is onto the most significant eigenvectors of the covariance matrix, if
one wishes to choose a linear transformation of data followed by a low dimensional
projection. One should bear in mind that if the aim is no! to obtain minimum
reconstruction error (for instance in a class discrimination experiment) the princi-
pal component analysis may not be good transformation to employ. Although one
might hope intuitively that a projection onto a subspace which retains the maximum
variance in the data also preserves that information which is z10s¢ vital for discrim-
inating between classes, this is not guaranteed. Indeed, the experimental results in
this memorandum support this warning.

6.1 Details of Implementation

For the analysis of the 27 dimensional SRUbank data, it is necessary to find the
eigenvectors of the covariance matrix of a large data set. Rather than evaluate



the covariance matrix (which would introduce numerical uncertainties due to the
large numbers involved in summing many thousands of vectors), the eigenvectors
may be obtained by a singular value decomposition of the data matrix itself. Any
(rectangular) matrix, A of size m X n (m > n) may be decomposed into the product

of three other matrices as
A =UQV’ (6)

where U is an m x n matrix whose colums are orthogonal, Q is a diagonal n x n
matrix whose elements (the singular values) are the positive square roots of the
eigenvalues of the covariance matrix A°A and V is an n x n matrix whose columns
are the eigenvectors of the covariance matrix. This is known as a singular value
decomposition and there are efficient algorithms for its numerical implementation.
We chose to obtain the covariance matrix eigenvectors by using this singular value
decomposition technique. This has the advantage that the distribution of the sin-
gular values usuvally conveys knowledge as to the distribution of information in the
data - one wouid expect that the exponentially decaying tail of the singular values is
dominated by noise (either intrinsic to the data, or noise due to numerical precision).
Also in real data in practice one can often discern ‘discontinuities’ in the graph of
singular values plotted as a function of order. These discontinuities are indicative
of a significant change in variance of the projected data and consequently are good
indicators to decide the order, or dimensionality of the projected data.

The amount of data to use was decided by using a sufficient number of frames
such that the successive ratios of the singular values of the data matrix did not change
by adding more data. Note that the magnitude of the singular values increases as
the amount of data increases, but the ratio of the (n + 1)th to the nth singular
value should remain fixed if there is sufficient data for reliable estimation. For the
experiment, 30000 frames of SRUbank data were used from the training set described
in section 7.1. This corresponded to the first 266 utterances in the training set.

A singular value decomposition of the data matrix was performed which pro-
duced the required eigenvectors and singular values. Once it was decided how many
singular values were important, the original 27 dimensional pattern vectors for all
the files of interest were projected onto the subspace spanned by those significant
singular vectors. The transformed vector components were obtained according to
equation (2). The experimentally observed singular values are plotted in figure 3
and the eigenvectors corresponding to the largest five singular values are displayed
in figure 4. The original 27 dimensional SRUbank data from 2all files were projected
onto the first 8 and 16 singular vectors. The resulting parameterisations will be
refered to as PC8 and PC16 respectively. These reduced dimension patterns were
used in the same manner as the cosine transform vectors in the HMM recognition
experiment.
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Figure 3: The singular values of SRUbank data derived from speaker SJ

7 Experimental Method

7.1 Training and Test Data

The experiments were conducted using speech from a single speaker (SJ) as training
and test material. The training set consisted of 37 ARM reports (224 sentences, 1985
words) chosen to give maximum coverage of phonemes which occur infrequently in
the ARM vocabulary. Ten reports from the same speaker (540 words, 2293 phonemes
(according to baseform transcriptions)) were used as test material. This size of test
set was identified as the minimum necessary to ensure statistical significance of the
improvements in word accuracy (5% improvements up to an absolute word accuracy
of 70%) which were expected during the initial development of the ARM system.

7.2 HMM Training

Initial estimates of the parameters of the phoneme HMMs were obtained from the
equivalent of two ARM reports of speech, hand labelled at the phoneme level. Sim-
ilarly, initial estimates of the common word HMM parameters were obtained from
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single examples of these words extracted from continuous speech. The initial es-
timates of parameters of a single state “non-speech” HMM were obtained from a
typical non-speech region of the training data. This model was used as the initial
model for all four non-speech HMMs. The models were optimised with respect to
~ the complete training set labelled orthographically at the sentence level. Standard
sub-word HMM training procedures were used in which sentence level HMMs were
constructed from phoneme-level HMMs using a dictionary of baseform transcriptions
of ARM vocabulary words. These models were then mapped onto the sentence level
acoustic data using the forward backward algorithm to obtain contributions to the
model parameter estimates.

7.3 Recognition

Recognition was performed using a one-pass dynamic programming algorithm with
beam search and partial traceback [1]. Results are presented in terms of % words
correct and % word accuracy. These are computed as follows, using dynamic pro-
gramming to align the true transcription of the test data with the output of the
recogniser:

% words correct = —JY-———:—’—_—D x 100,
% word accuracy = N_S]-V.D—I x 100

where N is the number of words in the test set, and S, D and I are the number of
words recognised as the incorrect word, deleted and inserted respectively.

Three different syntaxes were used to constrain the recognition process: a
word syntax, which allows recognition of any sequence of words from the ARM
vocabulary; a full syntax (perplexity 6) which was used to generate the ARM reports,
and a phoneme based simple syntax which allows any sequence of phonemes to be
recognised.

8 Results

The results of all of the experiments are presented in table 1.

Concentrating first on the figures for word accuracy, the table shows that the
CC12, CC16, CC12 § and PC16 representations all perform significantly better than
the original SRUbank-besed front-end, and that the best performance is obtained
using the CC12 and CC16 representations. The CC8 and CC8 § representations
perform slightly (but not significantly) worse than SRUbank. Significantly poorer
performance results when grand variance is used in conjunction with the CC8 § and

10



CC16 6 representations, suggesting that undertraining is not a problem with this
version of the ARM system.

The figures for phoneme accuracy lead to a different interpretation of the
results. In this case best performance is obtained using the representations CC8 6,
CC12 § and CC16 & which include information about temporal dynamics. The
figure for CC16 § is particularly interesting since this representation leads to a
significant increase in phoneme accuracy but decrease in word accuracy with respect
to SRUbank. This suggests that the CC16 § front-end changes the distribution of
phoneme errors so as to increase overall phoneme accuracy but at the same time
reduce the recognition performance for some phonemes which are important for
word- level recognition. This phenomenon has not been further investigated.

The two PC parameterisations perform worse than their CC counterparts in
terms of both phoneme and word recognition accuracy. One suggestion for this un-
expected result is that the superior performance obtained with the cosine transform
is due to more than the cosine transform’s ability to remove correlation between the
different components of the feature vectors. An alternative possibility is that the
better performance of the CC paramterisations is due to the explicit inclusion of the
original SRUbank mean channel amplitude.

The best overall performance is obtained with the CC12 § parameterisation.

Phoneme Syntax Word Syntax Full Syntax
(Perplexity=47) (Perplexity=497) (Perplexity=6)
Front-end | Phonemes | Phoneme | Words Word Words Word

Correct | Accuracy | Correct | Accuracy | Correct | Accuracy

SRUbank 59.4% 40.9% 80.6% 56.9% 98.7% 98.5%
CcC8 56.0% 38.9% 78.7% 53.3% 98.1% 97.4%
CCi12 61.4% 443% | 84.3% | 63.5% | 98.0% | 97.0%
CC16 62.7% 44.6% 83.7% 62.2% 98.5% 97.8%
CC8 6 65.8% 49.4% 82.2% 56.1% 98.3% 97.8%
CCi12¢ 67.9% 54.1% 85.0% 62.0% 98.5% 97.6%
_g_Clb’ é 66.9% 49.4% 80.4% 52.2% 98.5% 97.8%
PC8 45.7% 35.8% 78.7% 45.6% 96.7% 95.4%
PC16 58.9% 423% | 83.3% | 60.3% | 97.8% | 96.1%
CC86 GV 58.0% 39.3% 76.3% 34.1% 98.9% 98.7%
'CC166 GV | 60.7% 39.8% | 77.4% | 35.4% | 98.0% | 97.0%

Table 1: Results of experiments using alternative linear transformations of the
SRUbank front-end (speaker SJ, 540 word test set). :
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9 Conclusions

The experiments reported in this memorandum show that the performance of the
ARM system can be significantly improved by applying a suitable linear transfor-
mation to the output of the SRUbank filterbank analyser.

Subsequent work on the ARM system has been conducted using the CC16
and CC12 § parametrisations.
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Appendix A

FORTRAN source code used to compute cosine transform based front-end
representation. The motivation for including this in the text is to define unambigu-
ously the implementation of the cosine transform which was used. The code, as
presented, is inefficient due to the computation of the cosine term in the inner-most

loop.

C+

C == COMPUTE MFCC SCALE CONSTANT
c-

const=SQRT(2/srubank_dim)

DD ¢t=1,num_frames
C+
C =*»x AMPLITUDE NORMALISE
c..
mean_channel_amp=0
DO i=1,srubank_dim
mean_channel_amp=mean_channel_amp+srubank_frame(i,t)
END DO
mean_channel_amp=mean_channel_amp/srubank_dim
DO i=1,srubank_dim
srubank_frame(i,t)=srubank_frame(i,t)-mean_channel_amp
END DO
C+
C =*x MFCC CALCULATION
C_
DO i=1,num_cosine_coeffs
cc_frame(i,t)=0
DO j=1,srubank_dim
cos_term=COS(i*(j-0.5)*PI/srubank_dim)
cc_frame(i,t)=cc_frame(i,t)+ srubank_frame(j,t)*cos_term
END DO
cc_frame(i,t)=const*cc_frame(i,t)
END DO
cc_frame(num_cosine_coeffs+1)=mean_channel_amp

END DO ! end of t loop
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